Structure of Hexakis(2,6-diisopropylphenyl isocyanide)chromium(0)

By Kim A. Anderson, Brian Scott, Scot Wherland and Roger D. Willett
Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA

(Received 7 August 1990; accepted 2 January 1991)

Abstract

Cr}\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}\right)_{6}\right], M_{r}=1175 \cdot 7\), monoclinic, $P 2_{1} / c, \quad a=12.443$ (5), $\quad b=12 \cdot 927$ (7), $\quad c=$ $23 \cdot 302$ (8) $\AA, \beta=104 \cdot 03$ (3) $)^{\circ}, V=3636$ (3) $\AA^{3}, Z=$ 2, $D_{x}=1.07 \mathrm{Mg} \mathrm{m}^{-3}, \mathrm{Cu} K \alpha, \lambda=1.54178 \AA, \mu=$ $1.617 \mathrm{~mm}^{-1}, F(000)=1272, T=209 \mathrm{~K}, R=0.0848$ for 3239 unique observed $[F \geq 3 \sigma(F)$] reflections and 385 parameters. The Cr atom is sitting on a center of inversion and has an octahedral coordination sphere with $\mathrm{Cr}-\mathrm{C}$ distances of 1.917 (5), 1.924 (6) and 1.927 (5) \AA. The $\mathrm{C}-\mathrm{Cr}-\mathrm{C}$ bond angles range from 88.5 (2) to $92 \cdot 0(2)^{\circ} . \mathrm{C}-\mathrm{N} \equiv \mathrm{C}-\mathrm{Cr}-\mathrm{C} \equiv \mathrm{N}-\mathrm{C}$ displays an S -shape distortion about the Cr metal center, with $\mathrm{C}-\mathrm{N} \equiv \mathrm{C}$ angles of $163 \cdot 7$ (5), $168 \cdot 4$ (5), and $168.0(5)^{\circ}$ and $\mathrm{Cr}-\mathrm{C} \equiv \mathrm{N}$ angles of $176 \cdot 9(5)$, $177.5(5)$ and $176 \cdot 8(5)^{\circ}$.

Introduction. Recently we have reported the electron transfer kinetics of $\mathrm{Cr}^{0}, \mathrm{Cr}^{1}$ and Cr^{11} hexakis-(2,6-diisopropylphenyl isocyanides) (CNdipp) (Anderson \& Wherland, 1989, 1990, 1991). We have measured the self-exchange rate constants for $\mathrm{Cr}(\mathrm{CNdipp})_{6}^{0 /+1}$ and $\mathrm{Cr}(\mathrm{CNdipp})_{6}^{+1 /+2}$ as a function of concentration, temperature, solvent and added electrolyte. We have also studied cross reactions of the reduction of the Cr^{11} with a series of Co^{11} clathrochelates as a function of concentration, temperature, pressure and added electrolyte. We became interested in the Cr complexes because they are substitution inert in three oxidation states and are soluble and stable in non-aqueous solvents over a large temperature range. As an important part of these studies we have completed the structural characterization of the Cr^{0} complex.

Experimental. The ligand 2,6-diisopropylphenyl isocyanide (CNdipp) was prepared from the corresponding aniline (Aldrich) utilizing dichlorocarbene generated by a phase-transfer method (Weber \& Gokel, 1977). The hexakis(2,6-diisopropylphenyl isocyanide)chromium(0) was synthesized from $\mathrm{Cr}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)$ by a standard method (Essenmacher \& Treichel, 1977). The chromium acetate, isocyanide and dry ethanol were kept under nitrogen during the entire process. The reaction mixture was stirred for $20-40 \mathrm{~min}$, after which red crystals of
$\mathrm{Cr}(\mathrm{CNdipp})_{6}$ precipitated. The complex has been characterized by elemental analysis and ${ }^{1} H$ NMR, IR and visible spectroscopy (Anderson \& Wherland, 1989). Crystals of $\mathrm{Cr}(\mathrm{CNdipp})_{6}$ were grown from a solution of methylene chloride and hexanes (70/30). The solution was allowed to evaporate for $1-3 \mathrm{~h}$ in a nitrogen atmosphere. One of the air and moisture sensitive crystals was mounted on a glass fiber and coated with an amorphous resin to prevent deterioration on long exposure to air.

A hexagonally shaped, bright red crystal with dimensions of $0.3 \times 0.4 \times 0.5 \mathrm{~mm}$ was selected for data collection on a Nicolet $R 3 m$ diffractometer with a graphite monochromator (Campana, Shepard \& Litchman, 1981). A Nicolet LT2 low-temperature device was used to collect the data at 209 K . Lattice constants from 25 reflections in the range $41<2 \theta<$ 45°. Data were collected with ω scans $\left(2^{\circ}\right)$; two check reflections monitored every 96 reflections ($01 \overline{3}$ and $\overline{2} \overline{2} \overline{2}$) showed no systematic excursions; 5096 total reflections out to $2 \theta=110^{\circ}, 4552$ unique reflections with R (merge) $=0 \cdot 0240$; $h k l$ ranges, $0 \leq h \leq 11,0 \leq k$ $\leq 11,-20 \leq l \leq 20$. Empirical ψ-scan absorption corrections were applied (SHELXTL program XEMP; Sheldrick, 1985) assuming an ellipsoidally shaped crystal $(0.526<T<0.901)$.

The structure solution was obtained via the direct methods routine $S O L V$ in the $S H E L X T L 5.1$ crystallographic program package and the refinements also used that set of programs (Sheldrick, 1985). A difference synthesis based on the Cr and N positions obtained from SOLV yielded the C-atom positions. H atoms on the isopropyl groups were constrained to ideal locations ($\mathrm{C}-\mathrm{H}=0.96 \AA$) and assigned isotropic thermal parameters 1.2 times larger than the associated C atoms; H atoms on the rings were assigned isotropic thermal parameters fixed at $0.08 \AA^{2}$.

The final refinement resulted in $R=0.0848$ (3σ data set) and 0.1137 (all data) and $w R=0.0917$ (3 σ data set) and 0.0917 (all data), where $w=1 /\left[\sigma^{2}(F)+\right.$ $\left.g(F)^{2}\right]$, with $g=0.00249$. The goodness of fit was 1.505 , with parameter changes in the final cycle of least squares of $|\Delta / \sigma|_{\text {max }}=0.02$. The largest peak on the final difference map was $0.5 \mathrm{e} \AA^{-3}$ near Cr , while

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and isotropic thermal parameters $\left(\AA^{2}\right)$ for $\mathrm{Cr}(\mathrm{CNdipp})_{6}$

	x	y	$\therefore z$	$U_{\text {eq }}{ }^{*}$
Cr	0	0	0	41 (1)
$\mathrm{N}(1)$	1884 (4)	1231 (3)	813 (2)	56 (2)
N(2)	1657 (4)	-1795 (4)	101 (2)	58 (2)
N(3)	-886 (4)	-732 (4)	1062 (2)	62 (2)
C(1)	1158 (4)	791 (4)	512 (2)	47 (2)
C(2)	1017 (4)	-1133 (4)	69 (2)	46 (2)
C(3)	-524 (4)	-474 (4)	666 (2)	47 (2)
C(4)	2500 (3)	2994 (3)	875 (1)	61 (2)
C(5)	3308	3731	1107	72 (3)
C(6)	4280	3435	1511	85 (3)
C(7)	4446	2402	1683	74 (3)
C(8)	3638	1665	1451	62 (2)
C(9)	2665	1961	1047	54 (2)
C(10)	1388 (5)	3313 (5)	440 (3)	77 (3)
C(11)	495 (5)	3412 (6)	776 (3)	92 (3)
C(12)	1490 (7)	4290 (5)	96 (4)	101 (4)
C(13)	3830 (6)	489 (5)	1613 (3)	87 (3)
C(14)	4249 (7)	-63 (6)	1133 (4)	115 (4)
C(15)	4587 (10)	333 (8)	2213 (4)	177 (6)
C(16)	-929 (4)	-156 (3)	2031 (2)	88 (3)
C(17)	- 1390	- 220	2519	120 (4)
C(18)	-2217	-945	2527	121 (5)
$\mathrm{C}(19)$	-2584	-1606	2046	112 (4)
C(20)	-2123	- 1542	1558	82 (3)
C(21)	- 1295	-817	1550	64 (2)
C(28)	2976 (4)	-2921 (3)	-174 (2)	76 (3)
$\mathrm{C}(29)$	3854	-3618	-17	106 (4)
$\mathrm{C}(30)$	4245	-3914	573	121 (5)
C(31)	3757	-3514	1005	99 (4)
C(32)	2878	-2817	847	71 (3)
C(33)	2488	-2521	258	64 (2)
C(34)	2567 (7)	-2559 (6)	-829 (3)	102 (4)
C(37)	2247 (6)	-2400 (5)	1304 (3)	89 (3)
C(22)	-23 (8)	717 (8)	1995 (4)	137 (5)
C(23)	-98(10)	1662 (7)	2311 (5)	176 (7)
C(24)	1073 (8)	178 (8)	2179 (5)	149 (6)
C(25)	-2531 (7)	- 2285 (6)	1010 (3)	111 (4)
C(26)	-2877 (9)	-3324 (7)	1200 (5)	161 (6)
C(35)	2602 (10)	-3405 (7)	-1283 (4)	158 (6)
C(36)	3223 (3)	- 1627 (6)	-912 (4)	124 (5)
C(38)	2933 (9)	- 2459 (7)	1949 (3)	142 (5)
C(39)	1129 (6)	-2916 (6)	1214 (3)	92 (3)
C(27)	-3383 (7)	- 1746 (8)	550 (4)	128 (5)

* The equivalent isotropic U is defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.
the most negative excursion was $-0.5 \mathrm{e} \AA^{-3}$. Scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). Extinction corrections were made. Atomic coordinates are listed in Table 1 and bond distances and angles are given in Table 2. A view of the structure is shown in Fig. 1.*

Discussion. The temperature was chosen because $\mathrm{Cr}(\mathrm{CNdipp})_{6}$ had a phase transition at approximately 198 K. From initial studies this phase transition is irreversible. The average metal-carbon distance for the Cr^{0} complex ($1.922 \AA$) is slightly shorter than that found for the $\mathrm{Cr}\left(\mathrm{CNC}_{6} \mathrm{H}_{5}\right)_{6}$ complex ($1.938 \AA$) (Ljungstrom, 1978). The shortening of the chromium coordinated carbon bond distances upon changing from the smaller, less sterically

[^0]Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{Cr}(\mathrm{CNdipp})_{6}$

$\mathrm{Cr}-\mathrm{C}(1)$	1.927 (5)	$\mathrm{C}(13)-\mathrm{C}(8)$	1.571 (8)
$\mathrm{Cr}-\mathrm{C}(2)$	1.917 (5)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.522 (12)
$\mathrm{Cr}-\mathrm{C}(3)$	1.924 (6)	$\mathrm{C}(13)-\mathrm{C}(15) \quad 1$	1.497 (11)
$\mathrm{Cr}-\mathrm{C}(1 A)$	1.927 (5)	$\mathrm{C}(34)-\mathrm{C}(28) \quad 1$	1.558 (8)
$\mathrm{Cr}-\mathrm{C}(2 A)$	1.917 (5)	$\mathrm{C}(34)-\mathrm{C}(35) \quad 1$	1.529 (13)
$\mathrm{Cr}-\mathrm{C}(3 A)$	1.924 (6)	$\mathrm{C}(34)-\mathrm{C}(36) \quad 1$	1.495 (12)
$\mathrm{N}(1)-\mathrm{C}(1)$	$1 \cdot 150$ (6)	$\mathrm{C}(37)-\mathrm{C}(32) \quad 1$	1.564 (9)
$\mathrm{N}(1)-\mathrm{C}(9)$	1.370 (5)	$\mathrm{C}(37)-\mathrm{C}(38)$	1.540 (9)
$\mathrm{N}(2)-\mathrm{C}(2)$	$1 \cdot 159$ (7)	$\mathrm{C}(37)-\mathrm{C}(39) \quad 1$	1.511 (10)
$\mathrm{N}(2)-\mathrm{C}(33)$	1.378 (6)	$\mathrm{C}(22)-\mathrm{C}(16)-1$	1.612 (11)
$\mathrm{N}(3)-\mathrm{C}(3)$	$1 \cdot 169$ (8)	$\mathrm{C}(22)-\mathrm{C}(23) \quad 1$	1.441 (15)
$\mathrm{N}(3)-\mathrm{C}(21)$	1.358 (7)	$\mathrm{C}(22)-\mathrm{C}(24) \quad 1$	1.498 (14)
$\mathrm{C}(10)-\mathrm{C}(4)$	1.560 (7)	$\mathrm{C}(25)-\mathrm{C}(20)-1$	1.579 (9)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.513 (11)	$\mathrm{C}(25)-\mathrm{C}(26)$	1.509 (13)
$\mathrm{C}(10)-\mathrm{C}(12)$	1.517 (10)	$\mathrm{C}(25)-\mathrm{C}(27)$	1.487 (11)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(2)$	88.5 (2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(10)$	120.9 (3)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(3)$	91.0 (2)	$\mathrm{C}(9)-\mathrm{C}(4)-\mathrm{C}(10)$	119.1 (3)
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(3)$	92.0 (2)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(13)$	121.0 (3)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(1 A)$	180.0 (1)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	119.0 (3)
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(1 A)$	91.5 (2)	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(4)$	120.3 (2)
$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(1 A)$	89.0 (2)	$\mathrm{N}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	119.7 (2)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(2 A)$	91.5 (2)	$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(11)$	109.4 (5)
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(2 A)$	180.0 (1)	$\mathrm{C}(4)-\mathrm{C}(10)-\mathrm{C}(12)$	112.9 (5)
$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(2 A)$	88.0 (2)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(12)$	111.7 (6)
$\mathrm{C}(1 A)-\mathrm{Cr}-\mathrm{C}(2 A)$	88.5 (2)	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(14)$	109.7 (5)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(3 A)$	89.0 (2)	$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(15)$	112.3 (6)
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(3 A)$	88.0 (2)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$	111.8 (7)
$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(3 \mathrm{~A})$	180.0 (1)	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(22)$	121.0 (4)
$\mathrm{C}(1 A)-\mathrm{Cr}-\mathrm{C}(3 A)$	91.0 (2)	$\mathrm{C}(21)-\mathrm{C}(16)-\mathrm{C}(22)$) 118.9 (4)
$\mathrm{C}(2 A)-\mathrm{Cr}-\mathrm{C}(3 A)$	92.0 (2)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(25)$) 120.5 (4)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(9)$	$163 \cdot 7$ (5)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)$	119.5 (4)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(33)$	168.4 (5)	$\mathrm{N}(3)-\mathrm{C}(21)-\mathrm{C}(16)$	120.5 (3)
$\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{C}(21)$	168.0 (5)	$\mathrm{N}(3)-\mathrm{C}(21)-\mathrm{C}(20)$	119.5 (3)
$\mathrm{Cr}-\mathrm{C}(1)-\mathrm{N}(1)$	176.9 (5)	$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{C}(34)$	120.0 (4)
$\mathrm{Cr}-\mathrm{C}(2)-\mathrm{N}(2)$	177.5 (5)	$\mathrm{C}(33)-\mathrm{C}(28)-\mathrm{C}(34)$	119.9 (4)
$\mathrm{Cr}-\mathrm{C}(3)-\mathrm{N}(3)$	$176 \cdot 8$ (5)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(37)$	$122 \cdot 3$ (3)

Fig. 1. Illustration of the structure of $\mathrm{Cr}(\mathrm{CNdipp})_{6}$.
hindered phenyl isocyanide to the larger more sterically hindered 2,6-diisopropylphenyl isocyanide is indicative of an electronic effect. This may be partially due to a decreased amount of back bonding in the $\mathrm{Cr}(\mathrm{CNdipp})_{6}$ complex. The average $\mathrm{C} \equiv \mathrm{N}$ and $\mathrm{N}-\mathrm{C}_{\text {ring }}$ distances of 1.159 (5) and 1.368 (6) \AA show
no systematic variation with ligand and are in normal ranges found in other phenyl isocyanide complexes (Bohling \& Mann, 1984).

The $\mathrm{C}-\mathrm{N} \equiv \mathrm{C}-\mathrm{Cr}-\mathrm{C} \equiv \mathrm{N}-\mathrm{C}$ moieties show significant angular distortion. The trans ligands deviate in opposite directions producing an S-type distortion. The normal $90^{\circ} \mathrm{C}-\mathrm{Cr}-\mathrm{C}$ angles range from a high value of $92 \cdot 0$ (2) to a low value of 88.0 (2) ${ }^{\circ}$. The $\mathrm{Cr}-\mathrm{C}-\mathrm{N}$ angles, normally 180°, ranged from 176.8 (5) to $177 \cdot 5(5)^{\circ}$. The $\mathrm{C}=\mathrm{N}-\mathrm{C}$ angles, normally 180°, ranged from $163 \cdot 7$ (5) to $168 \cdot 0(5)^{\circ}$. In the $\mathrm{Cr}\left(\mathrm{CNC}_{6} \mathrm{H}_{5}\right)_{6}$ compound the trans $\mathrm{C} \equiv \mathrm{N}-\mathrm{C}$ bonds were distorted in the same direction, producing a bowed geometry, with $\mathrm{Cr}-\mathrm{C} 1.938$ (3) \AA, $\mathrm{C} \equiv \mathrm{N} \quad 1.176(4) \AA, \mathrm{C}-\mathrm{Cr}-\mathrm{C} 85.9(2)^{\circ}, \mathrm{C} \equiv \mathrm{N}-\mathrm{C}$ 172.9 (3) ${ }^{\circ}$ and $\mathrm{Cr}-\mathrm{C} \equiv \mathrm{N} 173.7$ (2) ${ }^{\circ}$ (Ljungström, 1978). This same bowed geometry was observed for the $\mathrm{Cr}^{1}, \mathrm{Cr}^{\text {II }}$ and $\mathrm{Cr}^{\mathrm{III}} \mathrm{Cr}\left(\mathrm{CNC}_{6} \mathrm{H}_{5}\right)_{6}$ complexes and the extent of the bowing was found to increase with the oxidation state (Bohling \& Mann 1984).

Acknowledgement is made to The Boeing Company and to NSF, through grant CHE-8408407, for the establishment of the X-ray diffraction facility.

References

Anderson, K. A. \& Wherland, S. (1989). Inorg. Chem. 28, 601-604.
Anderson, K. A. \& Wherland, S. (1990). Inorg. Chem. 29, 3822-3828.
Anderson, K. A. \& Wherland, S. (1991). Inorg. Chem. 30, 624-629.
Bohling, D. A. \& Mann, K. R. (1984). Inorg. Chem. 23, 1426-1432.
Campana, C. F., Shephard, D. F. \& Litchman, W. M. (1981). Inorg. Chem. 20, 4039-4044.
Essenmacher, G. J. \& Treichel, P. M. (1977). Inorg. Chem. 16, 800-808.
Luungström, E. (1978). Acta Chem. Scand. Ser. A, 32, 47-50.
Sheldrick, G. M. (1985). SHELXTL Users Manual. Version 5.1. Nicolet XRD Corporation, Madison, Wisconsin, USA.
Weber, W. P. \& Gokel, W. W. (1972). Tetrahedron Lett. pp. 1637-1640.

Acta Cryst. (1991). C47, 2339-2343

Complexes of Lithium and Sodium with sym-(Dibenzo-14-crown-4)methylphenyl Phosphinic Acid

By John H. Burns and Richard A. Sachleben
Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 3 January 1991; accepted 14 May 1991)

Abstract

Methylphenylphosphinato-2,3,9,10-dibenzo-1,4,8,11-tetraoxacyclotetradeca-2,9-diene)-lithium-ethanol (1/1), $\left[\mathrm{Li}\left(\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{PO}_{6}\right)\right] . \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, M_{r}$ $=506 \cdot 46$, triclinic, $P \overline{1}, a=10 \cdot 158(1), b=10 \cdot 663(1)$, $c=12.766$ (2) $\AA, \alpha=100.93$ (1), $\beta=109.55(1), \gamma=$ $99 \cdot 10(1)^{\circ}, \quad V=1242 \cdot 2(6) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.35 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \bar{\alpha})=0.71069 \AA, \mu=1.49 \mathrm{~cm}^{-1}$, $F(000)=536, \quad T=295 \mathrm{~K}, \quad R(F)=0.048$ for 1712 reflections $\quad[I>\sigma(I)]$. (2) (6-Methylphenylphos-phinato-2,3,9,10-dibenzo-1,4,8,11-tetraoxacyclotetra-deca-2,9-diene)diaquasodium trihydrate, $\left[\mathrm{Na}\left(\mathrm{C}_{25}{ }^{-}\right.\right.$ $\left.\left.\mathrm{H}_{26} \mathrm{PO}_{6}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}, M_{r}=566 \cdot 52$, triclinic, $P \overline{1}$, a $=10.493$ (6), $\quad b=11.770$ (5), $\quad c=13 \cdot 162$ (5) $\AA, \quad \alpha=$ 98.16 (3),$\quad \beta=108.73$ (4),$\quad \gamma=108.81$ (4) ${ }^{\circ}, \quad V=$ $1402(3) \AA^{3}, \quad Z=2, \quad D_{x}=1.35, \quad D_{m}=1.34 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Мо $K \bar{\alpha})=0.71069 \AA, \quad \mu=1.63 \mathrm{~cm}^{-1}, \quad F(000)=$ $600, T=296 \mathrm{~K}, R(F)=0.058$ for 2849 reflections [I $>\sigma(I)]$. In neither compound is there intramolecular bonding of the phosphinate anion to the cation enclosed in the crown. Compound (1) crystallizes as dimers in which the phosphinate group of one ligand is bonded to the Li^{+}ion enclosed in the ether cavity of its partner and vice versa. Molecules of compound

(2) are isolated from each other by channels of water molecules.

Introduction. The crown ethers with pendant sidearms containing functional groups (lariats) are primarily of two types: the oxa crowns in which the sidearm is attached to a C atom (C pivot) and the aza or oxa-aza crowns that are of the N -pivot type. In the latter the functionality is in a position axial (A) to the crown by virtue of the N -bonding geometry and usually coordinates any cation enclosed in the crown (Gandour, Fronczek, Gatto, Minganti, Schultz, White, Arnold, Mazzocchi, Miller \& Gokel, 1986; Arnold, Echegoyen, Fronczek, Gandour, Gatto, White \& Gokel, 1987). For C-pivot crowns the sidearm may be A or E (equatorial) (Echegoyen, Kaifer, Durst, Schultz, Dishong, Goli \& Gokel, 1984). In one case, a substituted 18 -crown- 6 derived from tartaric acid, two carboxylate groups occupy A positions but they are induced to be there by bulky vicinal substituents (Behr, Lehn, Moras \& Thierry, 1981).

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53874 (32 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

